Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37577682

ABSTRACT

The TMEM16A calcium-activated chloride channel is a promising therapeutic target for various diseases. Niclosamide, an anthelmintic medication, has been considered as a TMEM16A inhibitor for treating asthma and chronic obstructive pulmonary disease, but was recently found to possess broad-spectrum off-target effects. Here we show that, under physiological conditions, niclosamide acutely potentiates TMEM16A without having any inhibitory effect. Our computational and functional characterizations pinpoint a putative niclosamide binding site on the extracellular side of TMEM16A. Mutations in this site attenuate the potentiation. Moreover, niclosamide potentiates endogenous TMEM16A in vascular smooth muscle cells, triggers intracellular calcium increase, and constricts the murine mesenteric artery. Our findings advise caution when considering niclosamide as a TMEM16A inhibitor to treat diseases such as asthma, COPD, and hypertension. The identification of the putative niclosamide binding site provides insights into the mechanism of TMEM16A pharmacological modulation, shining light on developing specific TMEM16A modulators to treat human diseases.

2.
J Clin Invest ; 133(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-36951953

ABSTRACT

Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS). PS can be rapidly externalized to the outer cell membrane leaflet by phospholipid "scramblases," such as TMEM16F. TMEM16F-dependent PS externalization is well characterized in platelets. In contrast, how ECs externalize phospholipids to support coagulation is not understood. We employed a focused genetic screen to evaluate the contribution of transmembrane phospholipid transport on EC procoagulant activity. We identified 2 TMEM16 family members, TMEM16F and its closest paralog, TMEM16E, which were both required to support coagulation on ECs via PS externalization. Applying an intravital laser-injury model of thrombosis, we observed, unexpectedly, that PS externalization was concentrated at the vessel wall, not on platelets. TMEM16E-null mice demonstrated reduced vessel-wall-dependent fibrin formation. The TMEM16 inhibitor benzbromarone prevented PS externalization and EC procoagulant activity and protected mice from thrombosis without increasing bleeding following tail transection. These findings indicate the activated endothelial surface is a source of procoagulant phospholipid contributing to thrombus formation. TMEM16 phospholipid scramblases may be a therapeutic target for thrombotic cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Thrombosis , Animals , Mice , Blood Platelets/metabolism , Cardiovascular Diseases/metabolism , Endothelial Cells/metabolism , Mice, Knockout , Phosphatidylserines , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Thrombosis/pathology
3.
J Biol Chem ; 298(12): 102685, 2022 12.
Article in English | MEDLINE | ID: mdl-36370845

ABSTRACT

Brain-specific angiogenesis inhibitor 1 (BAI1; also called ADGRB1 or B1) is an adhesion G protein-coupled receptor known from studies on macrophages to bind to phosphatidylserine (PS) on apoptotic cells via its N-terminal thrombospondin repeats. A separate body of work has shown that B1 regulates postsynaptic function and dendritic spine morphology via signaling pathways involving Rac and Rho. However, it is unknown if PS binding by B1 has any effect on the receptor's signaling activity. To shed light on this subject, we studied G protein-dependent signaling by B1 in the absence and presence of coexpression with the PS flippase ATP11A in human embryonic kidney 293T cells. ATP11A expression reduced the amount of PS exposed extracellularly and also strikingly reduced the signaling activity of coexpressed full-length B1 but not a truncated version of the receptor lacking the thrombospondin repeats. Further experiments with an inactive mutant of ATP11A showed that the PS flippase function of ATP11A was required for modulation of B1 signaling. In coimmunoprecipitation experiments, we made the surprising finding that ATP11A not only modulates B1 signaling but also forms complexes with B1. Parallel studies in which PS in the outer leaflet was reduced by an independent method, deletion of the gene encoding the endogenous lipid scramblase anoctamin 6 (ANO6), revealed that this manipulation also markedly reduced B1 signaling. These findings demonstrate that B1 signaling is modulated by PS exposure and suggest a model in which B1 serves as a PS sensor at synapses and in other cellular contexts.


Subject(s)
Phosphatidylserines , Signal Transduction , Humans , Phosphatidylserines/genetics , Phosphatidylserines/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Thrombospondins/metabolism , HEK293 Cells
4.
Am J Physiol Cell Physiol ; 322(2): C283-C295, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35020501

ABSTRACT

Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (ANO5, TMEM16E). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology. Because these sex differences could be explained in several ways, we compared males and females in a mouse model of LGMD-R12. This model recapitulates the sex differences in human LGMD-R12. Only male Ano5-/- mice had elevated serum creatine kinase after exercise and exhibited defective membrane repair after laser injury. In contrast, by these measures, female Ano5-/- mice were indistinguishable from wild type. Despite these differences, both male and female Ano5-/- mice exhibited exercise intolerance. Although exercise intolerance of male mice can be explained by skeletal muscle dysfunction, echocardiography revealed that Ano5-/- female mice had features of cardiomyopathy that may be responsible for their exercise intolerance. These findings heighten concerns that mutations of ANO5 in humans may be linked to cardiac disease.


Subject(s)
Anoctamins/deficiency , Cardiomyopathies/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Myocardium/metabolism , Animals , Anoctamins/genetics , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Creatine Kinase/blood , Exercise Tolerance , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophies, Limb-Girdle/physiopathology , Myocardium/pathology , Sex Characteristics , Sex Factors
5.
J Cell Biol ; 220(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33496727

ABSTRACT

Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.


Subject(s)
Annexins/metabolism , Muscle Fibers, Skeletal/metabolism , Animals , Anoctamins/chemistry , Anoctamins/deficiency , Anoctamins/genetics , Anoctamins/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Cells, Cultured , Humans , Kinetics , Mice, Knockout , Mutation/genetics , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Protein Domains , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
PLoS One ; 15(3): e0229041, 2020.
Article in English | MEDLINE | ID: mdl-32130242

ABSTRACT

METHODS: Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. RESULTS: Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs. CONCLUSIONS: Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.


Subject(s)
Algorithms , High-Throughput Screening Assays/methods , Histological Techniques/methods , Image Processing, Computer-Assisted/methods , Muscle, Skeletal/pathology , Software , Anatomy, Cross-Sectional/methods , Animals , Cell Size , Machine Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/cytology , Reproducibility of Results
7.
Cell Calcium ; 84: 102103, 2019 12.
Article in English | MEDLINE | ID: mdl-31683182

ABSTRACT

Recently there has been a flurry of interest in the regulation of the homo-dimeric calcium-activated chloride channel ANO1 (also known as TMEM16A) by phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). These recent studies show that upon Ca2+ binding, PI(4,5)P2 cooperates to maintain the conductive state of ANO1. PI(4,5)P2 does so by binding to sites or modules on the protein's cytosolic side. These findings add a new function to the PI(4,5)P2 repertoire and a new dimension to ANO1 gating.


Subject(s)
Anoctamin-1/metabolism , Calcium/metabolism , Cytoskeleton/metabolism , Cytosol/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Anoctamin-1/genetics , Calcium Signaling , Humans , Ion Channel Gating
8.
Proc Natl Acad Sci U S A ; 116(40): 19952-19962, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31515451

ABSTRACT

ANO1 (TMEM16A) is a Ca2+-activated Cl- channel that regulates diverse cellular functions including fluid secretion, neuronal excitability, and smooth muscle contraction. ANO1 is activated by elevation of cytosolic Ca2+ and modulated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here, we describe a closely concerted experimental and computational study, including electrophysiology, mutagenesis, functional assays, and extended sampling of lipid-protein interactions with molecular dynamics (MD) to characterize PI(4,5)P2 binding modes and sites on ANO1. ANO1 currents in excised inside-out patches activated by 270 nM Ca2+ at +100 mV are increased by exogenous PI(4,5)P2 with an EC50 = 1.24 µM. The effect of PI(4,5)P2 is dependent on membrane voltage and Ca2+ and is explained by a stabilization of the ANO1 Ca2+-bound open state. Unbiased atomistic MD simulations with 1.4 mol% PI(4,5)P2 in a phosphatidylcholine bilayer identified 8 binding sites with significant probability of binding PI(4,5)P2 Three of these sites captured 85% of all ANO1-PI(4,5)P2 interactions. Mutagenesis of basic amino acids near the membrane-cytosol interface found 3 regions of ANO1 critical for PI(4,5)P2 regulation that correspond to the same 3 sites identified by MD. PI(4,5)P2 is stabilized by hydrogen bonding between amino acid side chains and phosphate/hydroxyl groups on PI(4,5)P2 Binding of PI(4,5)P2 alters the position of the cytoplasmic extension of TM6, which plays a crucial role in ANO1 channel gating, and increases the accessibility of the inner vestibule to Cl- ions. We propose a model consisting of a network of 3 PI(4,5)P2 binding sites at the cytoplasmic face of the membrane allosterically regulating ANO1 channel gating.


Subject(s)
Anoctamin-1/chemistry , Calcium/chemistry , Neoplasm Proteins/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Binding Sites , Cations , Cytosol/metabolism , Electrophysiology , HEK293 Cells , Humans , Molecular Conformation , Molecular Dynamics Simulation , Mutagenesis , Mutation , Patch-Clamp Techniques , Phospholipids/chemistry , Structure-Activity Relationship
9.
J Neurosci ; 38(48): 10271-10285, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30301754

ABSTRACT

Neurons of the CNS elaborate highly branched dendritic arbors that host numerous dendritic spines, which serve as the postsynaptic platform for most excitatory synapses. The actin cytoskeleton plays an important role in dendrite development and spine formation, but the underlying mechanisms remain incompletely understood. Tropomodulins (Tmods) are a family of actin-binding proteins that cap the slow-growing (pointed) end of actin filaments, thereby regulating the stability, length, and architecture of complex actin networks in diverse cell types. Three members of the Tmod family, Tmod1, Tmod2, and Tmod3 are expressed in the vertebrate CNS, but their function in neuronal development is largely unknown. In this study, we present evidence that Tmod1 and Tmod2 exhibit distinct roles in regulating spine development and dendritic arborization, respectively. Using rat hippocampal tissues from both sexes, we find that Tmod1 and Tmod2 are expressed with distinct developmental profiles: Tmod2 is expressed early during hippocampal development, whereas Tmod1 expression coincides with synaptogenesis. We then show that knockdown of Tmod2, but not Tmod1, severely impairs dendritic branching. Both Tmod1 and Tmod2 are localized to a distinct subspine region where they regulate local F-actin stability. However, the knockdown of Tmod1, but not Tmod2, disrupts spine morphogenesis and impairs synapse formation. Collectively, these findings demonstrate that regulation of the actin cytoskeleton by different members of the Tmod family plays an important role in distinct aspects of dendrite and spine development.SIGNIFICANCE STATEMENT The Tropomodulin family of molecules is best known for controlling the length and stability of actin myofilaments in skeletal muscles. While several Tropomodulin members are expressed in the brain, fundamental knowledge about their role in neuronal function is limited. In this study, we show the unique expression profile and subcellular distribution of Tmod1 and Tmod2 in hippocampal neurons. While both Tmod1 and Tmod2 regulate F-actin stability, we find that they exhibit isoform-specific roles in dendrite development and synapse formation: Tmod2 regulates dendritic arborization, whereas Tmod1 is required for spine development and synapse formation. These findings provide novel insight into the actin regulatory mechanisms underlying neuronal development, thereby shedding light on potential pathways disrupted in a number of neurological disorders.


Subject(s)
Dendrites/physiology , Hippocampus/growth & development , Synapses/physiology , Tropomodulin/physiology , Animals , Cells, Cultured , Dendrites/chemistry , Female , Hippocampus/chemistry , Hippocampus/cytology , Male , Neurons/chemistry , Neurons/physiology , Pregnancy , Protein Isoforms/chemistry , Protein Isoforms/physiology , Rats , Rats, Sprague-Dawley , Synapses/chemistry
10.
J Gen Physiol ; 150(11): 1498-1509, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30257928

ABSTRACT

Limb-girdle muscular dystrophy type 2L (LGMD2L) is a myopathy arising from mutations in ANO5; however, information about the contribution of ANO5 to muscle physiology is lacking. To explain the role of ANO5 in LGMD2L, we previously hypothesized that ANO5-mediated phospholipid scrambling facilitates cell-cell fusion of mononucleated muscle progenitor cells (MPCs), which is required for muscle repair. Here, we show that heterologous overexpression of ANO5 confers Ca2+-dependent phospholipid scrambling to HEK-293 cells and that scrambling is associated with the simultaneous development of a nonselective ionic current. MPCs isolated from adult Ano5 -/- mice exhibit defective cell fusion in culture and produce muscle fibers with significantly fewer nuclei compared with controls. This defective fusion is associated with a decrease of Ca2+-dependent phosphatidylserine exposure on the surface of Ano5 -/- MPCs and a decrease in the amplitude of Ca2+-dependent outwardly rectifying ionic currents. Viral introduction of ANO5 in Ano5 -/- MPCs restores MPC fusion competence, ANO5-dependent phospholipid scrambling, and Ca2+-dependent outwardly rectifying ionic currents. ANO5-rescued MPCs produce myotubes having numbers of nuclei similar to wild-type controls. These data suggest that ANO5-mediated phospholipid scrambling or ionic currents play an important role in muscle repair.


Subject(s)
Anoctamins/physiology , Myoblasts/physiology , Animals , Calcium/metabolism , HEK293 Cells , Humans , Mice , Phosphatidylserines , Phospholipid Transfer Proteins/metabolism
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 299-312, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29277655

ABSTRACT

The TMEM16A-mediated Ca2+-activated Cl- current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca2+. On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-ß-cyclodextrin M-ßCD) or restoration (with M-ßCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-ßCD alone transiently increases TMEM16A activity and dampens rundown whereas M-ßCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-ßCD, M-ßCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction.


Subject(s)
Anoctamin-1/metabolism , Calcium Signaling/physiology , Cell Membrane/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Neoplasm Proteins/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Anoctamin-1/genetics , Calcium/metabolism , Cell Membrane/genetics , Cholesterol/genetics , Fatty Acids/genetics , HEK293 Cells , Humans , Neoplasm Proteins/genetics , Phosphatidylinositol 4,5-Diphosphate/genetics
12.
Elife ; 62017 09 16.
Article in English | MEDLINE | ID: mdl-28917060

ABSTRACT

From bacteria to mammals, different phospholipid species are segregated between the inner and outer leaflets of the plasma membrane by ATP-dependent lipid transporters. Disruption of this asymmetry by ATP-independent phospholipid scrambling is important in cellular signaling, but its mechanism remains incompletely understood. Using MD simulations coupled with experimental assays, we show that the surface hydrophilic transmembrane cavity exposed to the lipid bilayer on the fungal scramblase nhTMEM16 serves as the pathway for both lipid translocation and ion conduction across the membrane. Ca2+ binding stimulates its open conformation by altering the structure of transmembrane helices that line the cavity. We have identified key amino acids necessary for phospholipid scrambling and validated the idea that ions permeate TMEM16 Cl- channels via a structurally homologous pathway by showing that mutation of two residues in the pore region of the TMEM16A Ca2+-activated Cl- channel convert it into a robust scramblase.


Subject(s)
Anoctamins/chemistry , Anoctamins/metabolism , Fusarium/enzymology , Ions/metabolism , Membranes/enzymology , Phospholipids/metabolism , Calcium/metabolism , Fusarium/metabolism , Membranes/metabolism , Molecular Dynamics Simulation , Protein Conformation
13.
Elife ; 62017 05 31.
Article in English | MEDLINE | ID: mdl-28561734

ABSTRACT

Cryo-electron microscopy reveals the structure of a chloride channel that is closely related to a protein that transports lipids.


Subject(s)
Calcium Channels , Chloride Channels , Anions , Calcium , Calcium Chloride , Cryoelectron Microscopy
14.
Annu Rev Physiol ; 79: 119-143, 2017 02 10.
Article in English | MEDLINE | ID: mdl-27860832

ABSTRACT

Anoctamin (ANO)/TMEM16 proteins exhibit diverse functions in cells throughout the body and are implicated in several human diseases. Although the founding members ANO1 (TMEM16A) and ANO2 (TMEM16B) are Ca2+-activated Cl- channels, most ANO paralogs are Ca2+-dependent phospholipid scramblases that serve as channels facilitating the movement (scrambling) of phospholipids between leaflets of the membrane bilayer. Phospholipid scrambling significantly alters the physical properties of the membrane and its landscape and has vast downstream signaling consequences. In particular, phosphatidylserine exposed on the external leaflet of the plasma membrane functions as a ligand for receptors vital for cell-cell communication. A major consequence of Ca2+-dependent scrambling is the release of extracellular vesicles that function as intercellular messengers by delivering signaling proteins and noncoding RNAs to alter target cell function. We discuss the physiological implications of Ca2+-dependent phospholipid scrambling, the extracellular vesicles associated with this activity, and the roles of ANOs in these processes.


Subject(s)
Chloride Channels/metabolism , Extracellular Vesicles/metabolism , Lipids/physiology , Animals , Calcium/metabolism , Cell Membrane/metabolism , Chlorides/metabolism , Humans , Signal Transduction/physiology
15.
J Physiol ; 595(5): 1515-1531, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27859335

ABSTRACT

KEY POINTS: The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. ABSTRACT: Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca2+ -dependent Cl- channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+ ]o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H+ ]o from 10-10 to 10-5.5  m caused a progressive increase in the chloride current (ICl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2+ sensitivity. Noise analysis showed that protons regulate TMEM16A by tuning its open probability without modifying the single channel current. We found a robust reduction of the proton effect at high [Ca2+ ]i . To identify protonation targets we mutated all extracellular glutamate and histidine residues and 4 of 11 aspartates. Most mutants were sensitive to protons. However, mutation that substituted glutamic acid (E) for glutamine (Q) at amino acid position 623 (E623Q) displayed a titration curve shifted to the left relative to wild type channels and the ICl was nearly insensitive to proton concentrations between 10-5.5 and 10-9.0  m. Additionally, ICl of the mutant containing an aspartic acid (D) to asparagine (N) substitution at position 405 (D405N) mutant was partially inhibited by a proton concentration of 10-5.5  m, but 10-9.0  m produced the same effect as in wild type. Based on our findings we propose that external protons titrate glutamic acid 623, which enables voltage activation of TMEM16A at non-saturating [Ca2+ ]i .


Subject(s)
Chloride Channels/physiology , Anoctamin-1 , Calcium/physiology , Chloride Channels/genetics , HEK293 Cells , Humans , Models, Molecular , Protons
17.
Pflugers Arch ; 468(7): 1241-1257, 2016 07.
Article in English | MEDLINE | ID: mdl-27138167

ABSTRACT

TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca(2+)]i), membrane depolarization, extracellular Cl(-) or permeant anions and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. (a) TMEM16A is activated by voltage in the absence of intracellular Ca(2+). (b) The Cl(-) conductance is decreased after reducing extracellular Cl(-) concentration ([Cl(-)]o). (c) ICl is regulated by physiological concentrations of [Cl(-)]o. (d) In cells dialyzed with 0.2 µM [Ca(2+)]i, Cl(-) has a bimodal effect: at [Cl(-)]o <30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM, [Cl(-)]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca(2+) and Cl(-) to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca(2+) ions coupled to a Vm-dependent binding of an external Cl(-) ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl(-) does not alter the apparent Ca(2+) affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl(-) acts by stabilizing the open configuration induced by Ca(2+) and by contributing to the Vm dependence of activation.


Subject(s)
Chloride Channels/metabolism , Chlorides/metabolism , Neoplasm Proteins/metabolism , Animals , Anions/metabolism , Anoctamin-1 , Calcium/metabolism , Cell Line , HEK293 Cells , Humans , Ion Channel Gating/physiology , Kinetics , Mice , Muscle Contraction/physiology , Myocytes, Smooth Muscle/metabolism
18.
Hum Mol Genet ; 25(10): 1900-1911, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26911675

ABSTRACT

Limb-girdle muscular dystrophies are a genetically diverse group of diseases characterized by chronic muscle wasting and weakness. Recessive mutations in ANO5 (TMEM16E) have been directly linked to several clinical phenotypes including limb-girdle muscular dystrophy type 2L and Miyoshi myopathy type 3, although the pathogenic mechanism has remained elusive. ANO5 is a member of the Anoctamin/TMEM16 superfamily that encodes both ion channels and regulators of membrane phospholipid scrambling. The phenotypic overlap of ANO5 myopathies with dysferlin-associated muscular dystrophies has inspired the hypothesis that ANO5, like dysferlin, may be involved in the repair of muscle membranes following injury. Here we show that Ano5-deficient mice have reduced capacity to repair the sarcolemma following laser-induced damage, exhibit delayed regeneration after cardiotoxin injury and suffer from defective myoblast fusion necessary for the proper repair and regeneration of multinucleated myotubes. Together, these data suggest that ANO5 plays an important role in sarcolemmal membrane dynamics. Genbank Mouse Genome Informatics accession no. 3576659.


Subject(s)
Chloride Channels/genetics , Distal Myopathies/genetics , Muscular Atrophy/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Animals , Anoctamins , Disease Models, Animal , Humans , Mice , Mice, Knockout , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Sarcolemma/pathology
19.
Pflugers Arch ; 468(3): 455-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26739711

ABSTRACT

Since their first descriptions, ion channels have been conceived as proteinaceous conduits that facilitate the passage of ionic cargo between segregated environments. This concept is reinforced by crystallographic structures of cation channels depicting ion conductance pathways completely lined by protein. Although lipids are sometimes present in fenestrations near the pore or may be involved in channel gating, there is little or no evidence that lipids inhabit the ion conduction pathway. Indeed, the presence of lipid acyl chains in the conductance pathway would curse the design of the channel's aqueous pore. Here, we make a speculative proposal that anion channels in the TMEM16/ANO superfamily have ion conductance pathways composed partly of lipids. Our reasoning is based on the idea that TMEM16 ion channels evolved from a kind of lipid transporter that scrambles lipids between leaflets of the membrane bilayer and the modeled structural similarity between TMEM16 lipid scramblases and TMEM16 anion channels. This novel view of the TMEM16 pore offers explanation for the biophysical and pharmacological oddness of TMEM16A. We build upon the recent X-ray structure of nhTMEM16 and develop models of both TMEM16 ion channels and lipid scramblases to bolster our proposal. It is our hope that this model of the TMEM16 pore will foster innovative investigation into TMEM16 function.


Subject(s)
Chloride Channels/chemistry , Neoplasm Proteins/chemistry , Phospholipids/chemistry , Amino Acid Sequence , Animals , Anoctamin-1 , Chloride Channels/genetics , Chloride Channels/metabolism , Chlorides/metabolism , Evolution, Molecular , Humans , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phospholipids/metabolism , Protein Structure, Tertiary
20.
Elife ; 4: e06901, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26057829

ABSTRACT

Phospholipid scrambling (PLS) is a ubiquitous cellular mechanism involving the regulated bidirectional transport of phospholipids down their concentration gradient between membrane leaflets. ANO6/TMEM16F has been shown to be essential for Ca(2+)-dependent PLS, but controversy surrounds whether ANO6 is a phospholipid scramblase or an ion channel like other ANO/TMEM16 family members. Combining patch clamp recording with measurement of PLS, we show that ANO6 elicits robust Ca(2+)-dependent PLS coinciding with ionic currents that are explained by ionic leak during phospholipid translocation. By analyzing ANO1-ANO6 chimeric proteins, we identify a domain in ANO6 necessary for PLS and sufficient to confer this function on ANO1, which normally does not scramble. Homology modeling shows that the scramblase domain forms an unusual hydrophilic cleft that faces the lipid bilayer and may function to facilitate translocation of phospholipid between membrane leaflets. These findings provide a mechanistic framework for understanding PLS and how ANO6 functions in this process.


Subject(s)
Cell Membrane/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Anoctamins , Cells, Cultured , DNA Mutational Analysis , Humans , Patch-Clamp Techniques , Phospholipid Transfer Proteins/genetics , Protein Conformation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...